Abstract
DNA methyltransferase 3A (DNMT3A) regulates diverse epigenetic processes, and DNMT3A mutations occur frequently in myelodysplastic syndromes (MDS), including in founding clones of MDS samples. Most DNMT3A mutations affect Arg882 (R882) in the catalytic domain of DNMT3A, and are found almost exclusively in a heterozygous state. To resolve the relationship between the genetic and epigenetic architectures of R882H+ MDS, we engineered primary human CD34+ hematopoietic stem and progenitor cells (HSPCs) to carry heterozygous DNMT3A R882H and performed temporally resolved, genome-wide regulatory mapping via DNase-seq combined with RNA-seq during erythroid differentiation in vitro, and in an in vivo transplantation model.
Compared with isogenic controls, heterozygous R882H HSPCs cells exhibited markedly impaired erythroid differentiation, accumulation of early myeloid progenitors, and diverse maturation defects. Transplantation of R882H HSPCs into W41 NSG mice revealed both impaired erythroid differentiation and preferential survival of mutant alleles in multiple hematopoietic lineages compatible with an early progenitor defect.
Regulatory profiling of DNMT3A R882H heterozygous cells during differentiation via combined DNase- and RNA-seq revealed global and sequential alterations in the regulatory landscapes in mutant cells, most prominently decommissioning of thousands of regulatory regions normally found in primitive cells that mark gene loci destined for expression during later differentiation stages. Decommissioned regulatory elements in R882H heterozygotes were concentrated around genes involved in both regulation of erythropoiesis and cell-cycle control, biasing HSPC differentiation away from erythropoiesis. Similar findings were observed in CD34+-selected bone marrows from 33 patients with MDS, comparing heterozygous DNMT3A R882H and wild type.
Collectively, our results indicate that DNMT3A R882H mutation reprograms early myeloid regulatory landscapes by preferentially targeting elements that control genes destined to be expressed at later stages of differentiation, resulting in a combined phenotype of impaired myeloid differentiation, impaired erythroid maturation, and preferential survival of R882H+ cells. The results provide novel mechanistic insights into the chromatin programming of erythroid differentiation and its connection with MDS.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.